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Abstract— The problem of optimizing the power output of
a class of Airborne Wind Energy Systems (AWES), named
fly-gen, is considered. Fly-gen AWES, called windplanes in
this paper, harvest wind power by means of an autonomous
tethered aircraft that carries out periodic trajectories roughly
perpendicular to the wind flow (crosswind conditions), using on-
board turbines and converters and an electric tether to transfer
power to the ground. The amount of generated power and
its variability strongly depend on the flown trajectory, whose
optimization is a highly nonlinear and non-convex problem.
Differently from most of the existing literature on the topic, this
problem is here addressed from a multi-objective perspective,
where both the average power and its variability are considered.
Through a recently-proposed pseudo-spectral decomposition of
the states and inputs, a rather small-scale nonlinear program is
derived to obtain a periodic orbit that maximizes the average
power under a constraint on its variability. Then, a series of
such programs is formulated and solved to approximate the
Pareto front of the problem. Finally, the latter is exploited to
analyze the possible trade-offs. The main finding of this work
is that, contrary to what postulated so far in the scientific
community, it is possible to operate the windplane with minimal
power fluctuations (10% of the average) with a very small
reduction of mean power, of the order of 5% with respect to
the maximum achievable. Additional considerations regarding
the sensitivity of the optimal trajectories to various factors are
presented, too. These results pave the way for a completely
novel way of optimizing and controlling windplanes.

I. INTRODUCTION

Airborne Wind Energy Systems (AWES) employ tethered,
fully autonomous airborne devices to generate electricity.
The most promising concepts fly the airborne units crosswind
[1] and can be classified into ground-gen and fly-gen systems
[2], [3]. This paper focuses on fly-gen systems, called wind-
planes in this paper, which generate power with relatively
small onboard turbines and send it to the ground station via
the tether (Fig. 1). A typical flight path for these systems
is shaped like a loop [4], even though figure-eight patterns
have been proposed as well [5].

The most notable prototypes of fly-gen systems were
developed by Makani Power, which stopped operations in
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Fig. 1: Top: Makani Power prototype [4]. Bottom: fly-gen or
onboard-generation Airborne Wind Energy concept.

2020 [4]. Their prototypes experienced large power fluctu-
ations over the crosswind loop, often using the turbines as
propellers in the ascending part of the loop [4]. A control
scheme, including a temperature controller and the possi-
bility to overload the powertrain temporarily, is proposed
over the entire wind speed range [5]. Recently, a new design
methodology for windplanes has been proposed [6], resulting
in a low aspect ratio wing and conventional, efficient airfoils.
However, also in [6] the resulting flight path presents a rather
large power variability. In this work, an optimal control
approach and a multi-objective analysis are proposed to
search for the Pareto front of flown trajectories with various
trade-offs in terms of average power and variability. This task
is particularly challenging due to the system nonlinearities
and non-convexity of the resulting optimization problems.
To alleviate these problems, a pseudo-spectral decomposition
of the states’ and inputs’ trajectories is employed and an
harmonic balance approach is adopted [7]. This kind of
approach has been successfully applied in related research
fields, such as wave energy converters (WECs), where it has
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proven advantageous in terms of computational efficiency
and ease of implementation [8]. Notably, it enables the
computation of optimal periodic trajectories, even under
strong nonlinearities and complex constraints. Alternatively,
[9] proposes a time-domain optimal control solution for
AWE systems, employing various homotopy strategies to
construct effective initial guesses.

For the sake of completeness, note that also for ground-
gen systems, a control to smooth the power fluctuation
has been studied [10]. However, ground-gen systems cannot
avoid large power fluctuations due to the so-called pumping
cycle, where the tether is periodically reeled out under large
forces and the reeled in by actually spending energy. Fly-gen
systems do not have this inconvenience.

The main application-oriented contribution of this work
is to show, for the first time in the literature, that optimal
trajectories with extremely limited power fluctuations at a
negligible cost in terms of average produced power do exist.
Ensuring a smoothed power output is crucial to meet grid
connection requirements. Moreover, it prevents the need for
oversizing electrical generators, intermediate energy storage
devices, and power conversion systems, thereby reducing
costs and improving the overall system efficiency [11].

Only circular-based trajectories are here analyzed, but the
same methodology can be applied to eight-path shapes.

II. SYSTEM DESCRIPTION AND MODELING

A Fly-gen Airborne Wind Energy System (AWES), called
windplane in this paper, is an aircraft-like device that
generates wind power by flying in fast crosswind motion.
Equipped with onboard generators and tethered to a ground
station, it converts wind energy into electricity, transmitting it
to the ground through a conductive tether. The main elements
are

• The ground station: This includes foundational me-
chanical structures, a winch for tether management, and
energy conversion systems connected to the grid or stor-
age. Additionally, it contains sensors, communication
systems, and control interfaces.

• The tether: A multi-layered, durable cable, containing
conductive materials for electrical power transmission.

• The aircraft: A rigid-wing structure equipped with
onboard generators, actuators, control surfaces, sensors,
and a communication system.

The system operates through different phases that ultimately
lead to the power generation stage. These include take-off,
landing, and the transitions between these and the generation
phase. This work focuses specifically on the power produc-
tion phase, during which the windplane flies in cyclic circular
or figure-eight trajectories, and the onboard turbines convert
wind energy into electrical power.

In this paper, the windplane is modeled as a point mass in
space. Since the tether is treated as a rigid link, the motion is
constrained in a sphere of radius equal to the tether length.
Therefore, the system can be modeled with two degrees of
freedom, as in [7]. The states are then the angular positions
z(t) =

[
β(t), ϕ(t)

]T
in the spherical coordinate system (Fig.

2). The model in [7] is here upgraded with modified control
inputs and an improved aerodynamic model. The control
inputs are

u(t) =
[
ψ(t), at(t), CL(t)

]T
. (1)

The roll angle ψ, as defined in [7], approximates the roll
angle of the aircraft and can be controlled with the ailerons.
The onboard wind turbines induction at determines the
turbines thrust and power and can be controlled by modifying
the angular velocity of the rotors. Finally, CL is the wing lift
coefficient and can be controlled by actuating the elevator (or
the entire horizontal stabilizer).
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Fig. 2: Sketch of the geometry. Inertial coordinate system
(ex, ey, ez) and spherical coordinate system (er, eϕ, eβ).

Denoting three-dimensional-component space vectors with
bold symbols, the model dynamics read

f = L+D + Tt + Fg + T −ma = 0. (2)

L is the aerodynamic lift. D is the aerodynamic drag,
inclusive of the equivalent tether drag and of the airfoils
polars [6]. Tt is the turbines’ thrust, defined as

Tt =
1

2
ρAtCT,t |va|va, (3)

with CT,t = 4at(1 − at) and the apparent velocity va
is composed by the free stream velocity vw, the induced
velocity from the far wake vi,f and the plane velocity v:
va = vw + vi,f − v. The induced velocities due to the far
wake vi,f = −afvw cos β̂eβ̂ are estimated with a vortex
model [12] and implemented with the formulation in [6].
The induction due to the far wake af is then

af =
κ
π/2
0

4π

ĈT λ̂
2(

λ̂− ĈT

)3/2
, (4)

where κ0 = (b/2)/R̂, with b being the wingspan and R̂ the
average turning radius, λ̂ = v̂/(vw cos β̂) is the mean wing
speed ratio and the thrust coefficient ĈT

ĈT =
L̂ · vw
Pref

(5)

where Pref is
Pref =

1

2
ρπb2v3w. (6)

The remaining external forces in Eq. 2 are the gravitational
force Fg and the tether force T , acting radially. Finally, m
is the windplane mass and a its acceleration.

The windplane shaft power is

P (t) =
1

2
ρAtCP,t(t)|va|3(t), (7)
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where At = NtπR
2
t is the onboard wind turbine total area,

CP,t = 4at(1−at)2 is the onboard turbine power coefficient,
defined using momentum theory, and va is the apparent
wind velocity seen by the onboard turbines. Finally, the shaft
mechanical power can be converted into electrical power by
reducing it by the electrical efficiency Pe = ηP .

III. MULTI-OBJECTIVE PSEUDO-SPECTRAL OPTIMAL
CONTROL PROBLEM FORMULATION

The model dynamics described in Section II can be written
as a set of second-order nonlinear differential equations in
the form

f(z(t), ż(t), z̈(t), u(t)) = 0, (8)

where z(t) is the state vector and u(t) is the control vector.
By assuming that Eq. (8) accepts periodic solutions, every
state variable is expanded as a Fourier series of order Nz
and of fundamental frequency ω = 2π/τ , with τ being the
trajectory period

z(t) ≈ Ẑ +

Nz∑
k=1

Zk,s sin (kωt) + Zk,c cos (kωt) ,

Z =
[
Ẑ, Z1,s, Z2,s, ... , Z1,c, Z2,c, ...

]T
.

(9)

Similarly, each control input is expanded as a Fourier series
of order Nu as

u(t) ≈ Û +

Nu∑
k=1

Uk,s sin (kωt) + Uk,c cos (kωt) ,

U =
[
Û , U1,s, U2,s, ... , U1,c, U2,c, ...

]T
.

(10)

The equations of motion (Eq. 8) can also be expanded as
Fourier series of order Nz as

f ≈ F̂ +

Nz∑
k=1

Fk,s sin (kωt) + Fk,c cos (kωt) ,

F =
[
F̂ , F1,s, F2,s, ... , F1,c, F2,c, ...

]T
.

(11)

According to the harmonic balance method, the model dy-
namics in Eq. (8) are respected if all its Fourier coefficients
F , which are function of the Fourier coefficients of the
states Z and of the control inputs U and of the fundamental
frequency ω, are null

F (Z,U, ω) = 0. (12)

A multi-objective trajectory optimization framework,
which employs the pseudo-spectral formulation just intro-
duced, is developed to identify the optimal control inputs
to maximize the mean power production while minimizing
harmonic oscillations. The optimization variables are the
Fourier coefficients of the states and the inputs, along with
the fundamental angular frequency

x =
[
Zβ , Zϕ, Uψ, Uat, UCL, ω

]
. (13)

Multi-objective Optimization Problems (MOPs) aim to opti-
mize all elements in a vector of conflicting scalar objective
functions, resulting in a set of Pareto-optimal solutions,
also known as non-dominated solutions [13]. For each of
these solutions, no other feasible alternative can improve

the performance of one objective without degrading another,
according to the Pareto dominance relationship [14]. The
corresponding points in the criterion space constitute the
Pareto front, which illustrates the trade-off curve, i.e. the
different alternatives in optimizing the considered objectives.
The MOP employed for trajectory optimization is defined as
follows

min
x∈X

[
−P̂ (x),∆P (x)

]
s.t. F (x) = 0.

(14)

where the objectives are the average power produced over a
period P̂ (x) and the harmonic power content ∆P (x). The
equality constraints are the Fourier coefficient of the model
dynamics F (Eq. 12). The harmonic power content ∆P (x)
is efficiently defined in the frequency domain as

∆P (x) = ∥Pharm∥2,

Pharm =
[
P1,s, P2,s, ..., P1,c, P2,c, ...

]T
,

(15)

with Pharm being the vector containing the Fourier coeffi-
cients of the power, excluding the mean value.

This study performs a comprehensive trade-off analysis,
rather than computing a single solution that achieves a de-
sired balance between the two objectives. Thus, a sufficiently
representative solution set for the entire Pareto optimal set
and the corresponding Pareto front in the criterion space (i.e.
a posterior articulation of preferences [14]) is here provided.
To enhance convergence and achieve a uniform distribution
of solutions, deterministic classical methods are chosen over
evolutionary algorithms [15] and, more generally, over meta-
heuristics [16]. Specifically, the ε-constraint scalarization
approach [17] is used, enabling the separation of the scalar
objectives of the considered bi-criteria problem, unlike other
widely used scalarization methods such as the weighted sum
[18], normal constraint [19], Normal-Boundary Intersection
[20], Pascoletti-Serafini [21].

The optimization problem formulation in Eq. (14) is then
reformulated as

min
x∈X

−P̂ (x)
s.t. ∆P (x) ≤ ε

F (x) = 0.

(16)

The maximization of power production is chosen as the
primary goal and the minimization of harmonic oscillation
is converted into an additional constraint. Furthermore, the ε
parameter is varied uniformly within the range defined by the
two anchor points, obtaining a well-distributed point-cloud
approximation of the Pareto front.

The resulting single-objective instances of the ε-constraint
problem formulation, defined in Eq. (16), are constrained,
single-objective, non-linear and non-convex optimization
problems with Nz,tot+Nu,tot+1 optimization variables and
Nz,tot number of equality constraints. With

Nz,tot = 2(Nβ +Nϕ) + 2

Nu,tot = 2(Nψ +Nat +NCL) + 3.
(17)

In order to solve them the standard interior-point gradient-
based solver provided in the fmincon MATLAB function is
used. The initial guesses are taken to be circular trajectories
found with analytical approximations. The derivatives of
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the flight dynamic model with respect to the optimization
variables are taken analytically and provided to the solver,
allowing for a deep and fast convergence of the solution. The
problem instances are solved using an AMD Ryzen 9 (3.79
GHz) 12-core processor with 32 GB of RAM. Each solution
takes approximately 10 seconds of computational time.

Remark 1: The frequency domain formulation of the con-
trol problem offers several advantages over its time-domain
approach for this system. It inherently captures periodic
behavior without requiring additional constraint, as would
be needed in the time domain. Moreover, time domain
parametrization can quickly escalate the number of optimiza-
tion variables as the period τ grows, while in the frequency
domain, the number of variables remains fixed, influenced
solely by the number of harmonics. This could be sufficiently
low for effective engineering control of such systems.

IV. MAIN ANALYSES AND FINDINGS

To carry out all the analyses of this paper, a system of
100 kW rated power and 10 m wingspan has been designed
by improving the design proposed in [6]. Its characteristics
are shown in Table I. Moreover, the order of the number of
optimization variables is determined to be as in Table II.

Parameter Value
Pr (rated power) 100 kW
b (wingspan) 10 m

AR (aspect ratio) 6.4
airfoil FFA-W3 211

m (mass) 245 kg
Lte (tether length) 150 m

Dte (tether diameter) 10 mm
Cd,te (tether drag coefficient) 1

Nt (number of turbines) 2
Rt (turbine radius) 1.25 m

TABLE I: System parameters.

Nz Nu
Nβ 10 Nψ 2
Nϕ 10 Nat 2

NCL 1

TABLE II: Number of harmonics for states and controls used
throughout the paper simulations.

A. Multi-objective problem in idealized condition
This subsection presents the trade-off analyses for an

idealized condition with constant wind speed of vw = 7m/s.
The windplane can fly at negative elevation angles, which
would be unfeasible in a real application because of the
presence of the ground. This idealization allows to under-
stand key physical phenomena also present in more realistic
cases, analyzed later.

The Pareto front under these idealized conditions is de-
picted in Figure 3, highlighting key Pareto-optimal solutions
to be compared. For clarity, the criterion space was filtered
to exclude negligible solutions—either dominated or non-
dominated points that deviate from the typical shape of the

estimated front. Due to this operation, the presented solutions
are not classified as globally Pareto optimal. Moreover, the
assessment of their global Pareto optimality exceeds the
scope of this analysis.

Fig. 3: Pareto front approximation in nominal case (vw =
7m/s).

The utopia point in Figure 3 is represented as a green di-
amond, while the light blue point b denotes the compromise
solution computed after normalizing the objectives relative to
the corresponding worst-performing Pareto-optimal solution
(i.e. point b represents the solution having the smallest
Euclidean distance from the utopia point in the normalized
criterion space). The anchor point a corresponds to the
optimal solution obtained by maximizing the mean power
without constraints on the power fluctuation; in this con-
dition, the corresponding mean power P̂ a is the maximum
achievable. The anchor point c corresponds to the optimal
solution obtained by constraining the power fluctuation to
be ∆P ≤ 0.02 P̂ a. To evaluate the performance of vari-
ous Pareto-optimal solutions, Figure 4 illustrates simulation
trends for cases a, b, and c over one cycle period τ .
The results indicate that power fluctuation can be minimized
at a slight cost in average power (at most 2 kW), while
keeping comparable control effort. The lift coefficient CL
influences the average power through its mean value, while
its fluctuation is approximately set to be opposite with respect
to the plane velocity [6] for aerodynamic reasons. The roll
angle ψ is set to redirect lift upward and compensate gravity
[7]. The turbine induction at plays a crucial role in reducing
∆P . Looking at the anchor point a, the turbine induction at
is set to convert part of the gravitational power to electrical
power. Indeed, at t = 0 the windplane points downward, thus
the effect of gravitational force is reduced by the increased
turbines’ thrust force. This is found to be optimal for the
mean power [7], [6]. Looking at the anchor point c, the
turbine induction at is instead set to keep the power P (t)
(Eq. 7) constant. In order to achieve a constant power, the
product between the onboard wind turbine power coefficient
CP,t = 4at(1−at)2 shall be at the maximum value when the
windplane velocity v, and thus the apparent velocity cubed
v3a, is at the minimum value. To minimize power fluctuation,
the phase of at is then adjusted to be anti-phased with
the windplane speed v. The windplane trajectories remain
closely similar (Figure 5). Note that, without an elevation
constraint, the optimal trajectory has β̂ < 0 because in this
case the wing is almost purely crosswind [7]. Thus, for
all these reasons, the decision-maker may prefer solution
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Fig. 5: Windplane space trajectories comparison of key
Pareto-optimal solutions in nominal case (vw = 7m/s).

c, which emphasizes reducing power oscillation ∆P with
a small mean power penalty.

B. Sensitivity analyses for different wind speeds and mean
elevation angles

In this subsection, the sensitivity of the Pareto curve under
varying wind speeds (assumed constant with altitude) and
different elevation angles is studied. The optimal control
problem (14) is then enlarged with an equality constraint
on the mean elevation angle β̂. This ensures that the wind-
plane flies safely above ground and can also be used for
power-curtailment grid strategy. Using the frequency-domain
parametrization, the mean elevation can be enforced simply
by fixing the first Fourier coefficient of the elevation angle.
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=0.2  =0.3   =0.4   =0.5           =0.75 =1=0.1

Fig. 6: Normalized Pareto fronts approximation at different
wind conditions and mean elevation angles. Dashed lines
represent the equation ĈP = ξ∆CP

The windplane under consideration starts to produce en-
ergy at the cut-in wind speed of approximately vw ≈ 5m/s
and reaches rated power at approximately vw ≈ 9m/s, with a
mean elevation angle β̂ ≈ 30◦. For this reason, the system is
studied at vw = 5m/s, at vw = 7m/s and at vw = 9m/s. Two
reasonable use-case mean elevation angles are considered
β̂ = 25◦ and β̂ = 35◦. In order to clearly show the
Pareto fronts, the mean power P̂ and its fluctuation ∆P
are normalized with a reference power Pref corresponding
to the wind power passing through a disk with radius equal
to the wingspan b (Eq. 6) [6]. The conclusions obtained in
Section IV-A are broadly generalizable as shown in Figure
6. Indeed, the resulting curves obtained from the computed
Pareto optimal solutions are relatively flat, indicating that
the power oscillations can be minimized without a substantial
decrease in average power for the investigated vw and β̂. This
normalized power P̂ /Pref, referred as the power coefficient
ĈP in [6], is representative of the efficiency of the power
conversion from wind power to electrical power. This power
coefficient reaches higher values for higher wind speeds
because the power losses due to the exchange of gravitational
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potential energy decrease [6]. Moreover, higher power can
be harvested at lower elevation angles, as can be noted
by comparing the solutions at the same incoming wind
speed. Figure 6 shows also a few dashed lines starting
from the origin. The solutions on the left of these lines are
characterized by a power fluctuation lower than the indicated
value ξ times the mean power. As an example, a solution
lying on the left to the line closest to the y-axis (ξ = 0.1)
has a power fluctuation lower than 10 % of the mean power
∆P < 0.1 P̂ . Note that operating the system to be on the
right of ξ = 1 presents two main drawbacks: (1) using the
onboard turbines as propellers, when P (t) < 0. This dual-use
scenario is generally suboptimal because consuming power
leads to a double-count of the electrical efficiency and thus
a large reduction of the mean generated power [7]; (2) high
power excursions necessitate an oversized electric generator,
increasing costs and onboard mass, negatively affect overall
windplane performance. The sensitivity analysis carried out
in this section shows that the power fluctuations can be
reduced without large mean power reduction at all relevant
below-rated wind speeds. In particular, it is possible to reduce
the harmonic power content to 10 % of the mean power by
reducing the power production up to 5% with respect to the
maximum achievable for all the analyzed cases.

V. CONCLUSIONS AND OUTLOOK

This paper provides an in-depth analysis on the power
production of Airborne Wind Energy Systems (AWES),
introducing an enhanced system model and a novel multi-
objective optimal control problem to the literature. A
frequency-domain parametrization, utilizing the harmonic
balance method, is applied to significantly reduce optimiza-
tion variables compared to time-domain methods. Through a
comprehensive trade-off analysis, a power smoothing policy
is demonstrated and quantified, significantly reducing power
fluctuations—by at least 10% of the average— while main-
taining a comparable control effort and only slightly reducing
the mean power (up to 5% compared to the maximum
achievable). This holds across wind speeds between the
cut-in and rated wind speeds, with elevation angles that
ensure safety from ground and power curtailment strategies.
A key insight reveals that power smoothing is driven by the
harmonic control of onboard turbine induction, which needs
to be in anti-phase with respect to the windplane velocity.
Future research will extend the analysis to eight-path-shapes
AWES trajectory and global Pareto fronts through global
optimization techniques. Other multi-objective formulations
will also be considered, such as minimizing tether force
oscillations, which affect structural loads and durability.
Importantly, the optimal trajectories from the power smooth-
ing policy will serve as a foundation for the derivation
of feedback control strategies and multi-objective predictive
control studies. An extension to a six-degree-of-freedom
model is currently under investigation to evaluate closed-loop
performance under actuator dynamics.
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